
A PARTITION BASED METHOD FOR SPECTRUM-PRESERVING MESH
SIMPLIFICATION

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

MİSRANUR YAZGAN

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

AUGUST 2022

Approval of the thesis:

A PARTITION BASED METHOD FOR SPECTRUM-PRESERVING MESH
SIMPLIFICATION

submitted by MİSRANUR YAZGAN in partial fulfillment of the requirements for
the degree of Master of Science in Computer Engineering Department, Middle
East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
Head of Department, Computer Engineering

Assoc. Prof. Dr. Yusuf Sahillioğlu
Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Yücel Yemez
Computer Engineering, Koç University

Assoc. Prof. Dr. Yusuf Sahillioğlu
Computer Engineering, METU

Assist. Prof. Dr. Hakan Yıldız
Computer Engineering, METU

Date: 29.08.2022

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Misranur Yazgan

Signature :

iv

ABSTRACT

A PARTITION BASED METHOD FOR SPECTRUM-PRESERVING MESH
SIMPLIFICATION

Yazgan, Misranur

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. Yusuf Sahillioğlu

August 2022, 56 pages

When the complexity of a mesh starts introducing high computational costs, mesh

simplification methods come into the picture, to reduce the number of elements uti-

lized to represent the mesh. Majority of the simplification methods focus on preserv-

ing the appearance of the mesh, ignoring the spectral properties of the differential

operators derived from the mesh. The spectrum of the Laplace-Beltrami operator is

essential for a large subset of applications in geometry processing. Coarsening a mesh

without considering its spectral properties might result with incorrect calculations on

the simplified mesh. Given a 3D triangular mesh, this thesis aims to decrease its res-

olution by applying mesh simplification, while focusing on preserving the spectral

properties of the associated cotangent Laplace-Beltrami operator. Unlike the existing

spectrum-preserving coarsening methods, this work utilizes solely the eigenvalues of

the operator, in order to preserve the spectrum. The presented method is partition

based, in a way that the input mesh is divided into smaller patches and each patch

is simplified individually. The method is evaluated on a variety of meshes, by using

functional maps and quantitative norms. These metrics are used to measure how well

the eigenvalues and eigenvectors of the Laplace-Beltrami operator computed on the

v

input mesh are maintained by the output mesh. At the end of this thesis, it is demon-

strated that the achieved spectrum preservation is at least as effective as the existing

spectral coarsening methods.

Keywords: Laplace-Beltrami operator, mesh simplification, spectral mesh simplifica-

tion, spectral coarsening, geometry processing

vi

ÖZ

SPEKTRUM KORUMA ODAKLI POLİGONAL BASİTLEŞTİRME İÇİN
BÖLÜMLEYİCİ BİR YÖNTEM

Yazgan, Misranur

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Yusuf Sahillioğlu

Ağustos 2022 , 56 sayfa

Yüksek çözünürlüğe sahip poligonal modeller yüksek hesaplama maliyetine sebep

olmaya başladıklarında, modeli oluşturan eleman sayısını azaltmak için poligonal ba-

sitleştirme metodlarına ihtiyaç duyulur. Poligonal basitleştirme algoritmalarının bü-

yük bir çoğunluğu modelin görüntüsünü koruma odaklıdır ve poligonal model için

oluşturulan diferansiyel operatörlerin spektral özelliklerini göz ardı ederler. Laplace-

Beltrami operatörünün spektrumu, geometri işleme uygulamalarının geniş bir alt kü-

mesi için gerekli temel bir bileşendir. Bir modeli spektral özelliklerini dikkate al-

madan basitleştirmek, basitleştirilmiş model üzerinde yapılan hesaplamaların yanlış

olmasına sebep olabilir. Bu tezin amacı, verilen 3B modelin çözünürlüğünü poligonal

basitleştirme yöntemleri ile düşürürken, model için oluşturulan kotanjant Laplace-

Beltrami operatörünün spektral özelliklerini korumaktır. Mevcut spektrum koruma

odaklı basitleştirme yöntemlerinin aksine, bu çalışmada spektrumu korumak için yal-

nızca operatörün özdeğerleri kullanılmaktadır. Bu tezde önerilen yöntem, modeli daha

küçük bölümlere ayırıp, basitleştirme yöntemini her bir bölüm için ayrı ayrı uygu-

lama üzerine kuruludur. Yöntem, farklı modeller üzerinde denenmiş ve fonksiyonel

vii

eşleme ve nicel normlar ile değerlendirilmiştir. Bu ölçütler, girdi olarak verilen model

üzerinde hesaplanan Laplace-Beltrami operatörünün özdeğerlerinin ve özvektörleri-

nin, çıktı model tarafından ne kadar iyi korunduğunu ölçmek için kullanılır. Bu tezin

sonunda, elde edilen spektrum korumanın, en az mevcut spektrum koruma odaklı ba-

sitleştirme yöntemleri kadar etkili olduğu gösterilmiştir.

Anahtar Kelimeler: Laplace-Beltrami operatörü, poligonal basitleştirme, spektral po-

ligonal basitleştirme, spektrum koruma, geometri işleme

viii

ACKNOWLEDGEMENTS

Firstly, I would like to sincerely thank my thesis advisor Assoc. Prof. Dr. Yusuf

Sahillioğlu for his invaluable guidance, understanding and friendly attitude through

this study. It is indisputable that his vision and collaboration helped me very much,

putting together this work.

I would like to thank my family for providing me their continuous support and love,

throughout my whole life. I am grateful for their faith in me, their appreciation for

what I do and for the motivation they provided even from far away.

I would also like to thank my close friends here and overseas, who has always been

motivating and encouraging me through the process.

And lastly, my special thanks goes to my love Furkan, who has been standing by my

side all through this journey, never once wavering in giving me his endless support,

giving me valuable advice and endless motivation. It would not have been possible

for me to make it through this, without him glued to the desk with me, side by side.

ix

To my family and my love

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . ix

TABLE OF CONTENTS . xi

LIST OF FIGURES . xiii

LIST OF TABLES . xvi

LIST OF ABBREVIATIONS . xvii

CHAPTERS

1 INTRODUCTION . 1

1.1 Motivation and Problem Definition 1

1.2 Contributions . 2

1.3 The Outline of the Thesis . 3

2 BACKGROUND AND RELATED WORK 5

2.1 Mesh Simplification . 5

2.2 Laplace-Beltrami Operator . 6

2.2.1 Laplacian Matrix . 7

2.2.2 Mass Matrix . 9

xi

2.2.3 Spectrum of the Laplace-Beltrami Operator 10

2.3 Related Work . 12

3 METHOD . 15

3.1 Algorithm . 15

3.1.1 Partitioning . 19

3.1.2 Multi-Step Simplification with Hierarchical Partitioning 22

3.1.3 Eliminating Similar Edges 24

3.1.4 Threading . 25

3.1.5 Illegal Edge Collapses . 27

3.1.6 Implementation Details . 27

4 EXPERIMENTS AND RESULTS . 29

4.1 Evaluation . 29

4.2 Results . 33

4.2.1 Number of Partitions . 33

4.2.2 Number of Eigenvalues . 35

4.2.3 Similar Edge Collapses . 36

4.2.4 Threading . 38

4.2.5 Comparisons . 40

4.2.6 Heat Kernel Signature . 49

5 CONCLUSION AND FUTURE WORK 51

REFERENCES . 53

xii

LIST OF FIGURES

FIGURES

Figure 1.1 Lion mesh is reduced from 20212 vertices to 2000 vertices (10%

of its initial size). For an effective spectrum preservation, the functional

map visualizations should be resembling the identity matrix. Since the

main focus of QSlim [1] is to preserve the appearance of the mesh, it

falls short of preserving the spectral properties. 2

Figure 2.1 Edge collapse and vertex split operations 6

Figure 2.2 Edge collapse and vertex split operations for boundary edge . . . 6

Figure 2.3 Uniform Laplacian matrix for a sample mesh 8

Figure 2.4 The angles used in the cotangent weights [2] 9

Figure 2.5 Barycentric cell area for vertex i [3] 9

Figure 2.6 Visualization of the eigenvectors over the mesh surface 11

Figure 3.1 Bunny mesh with n = 3485 divided into 10 partitions. The

triangles in the edge-cut region are marked with different coloring for

better understanding. 20

Figure 3.2 Simplification of the edge-cut region 21

Figure 3.3 Different sized partitions on cactus mesh 22

Figure 3.4 Multi-step hierarchical partitioning for eagle mesh 23

Figure 3.5 Partitions assigned to batches 26

xiii

Figure 4.1 Optimal functional map C, where red and blue elements corre-

spond to values 1 and −1 respectively 31

Figure 4.2 Block diagonal C for a sphere mesh simplified from 650 vertices

to 200 vertices . 32

Figure 4.3 Simplification times for eagle and bunny meshes with different

partition sizes . 33

Figure 4.4 Results obtained by employing different number of partitions on

eagle mesh . 34

Figure 4.5 Simplification times for eagle mesh by preserving different num-

ber of eigenvalues . 35

Figure 4.6 ∥·∥L and ∥·∥D values obtained on bunny mesh for different num-

ber of eigenvalues . 36

Figure 4.7 Spectrum preservation and timing results for various values of x

and n . 37

Figure 4.8 Results obtained by enabled and disabling similar edge collapses 38

Figure 4.9 The number of threads (partitions) running at the same time for

various number of partitions . 39

Figure 4.10 With each method, bunny mesh is simplified from 3485 to 600

vertices (17% of its initial size). 42

Figure 4.11 The first 100 eigenvalues of the Laplacian operator for the coars-

ened bunny mesh . 42

Figure 4.12 With each method, eagle mesh is simplified from 25727 to 2000

vertices (8% of its initial size). 43

Figure 4.13 The first 100 eigenvalues of the Laplacian operator for the coars-

ened eagle mesh . 43

xiv

Figure 4.14 With each method, cactus mesh is simplified from 25131 to 2000

vertices (8% of its initial size). 44

Figure 4.15 The first 100 eigenvalues of the Laplacian operator for the coars-

ened cactus mesh . 44

Figure 4.16 With each method, lion mesh is simplified from 20212 to 2000

vertices (10% of its initial size). 45

Figure 4.17 The first 100 eigenvalues of the Laplacian operator for the coars-

ened lion mesh . 45

Figure 4.18 With each method, dragon mesh is simplified from 20741 to

1500 vertices (7% of its initial size). 46

Figure 4.19 The first 100 eigenvalues of the Laplacian operator for the coars-

ened dragon mesh . 46

Figure 4.20 With each method, camel mesh is simplified from 9757 to 800

vertices (8% of its initial size). 47

Figure 4.21 The first 100 eigenvalues of the Laplacian operator for the coars-

ened camel mesh . 47

Figure 4.22 With each method, armadillo mesh is simplified from 49990 to

3000 vertices (6% of its initial size). 48

Figure 4.23 The first 100 eigenvalues of the Laplacian operator for the coars-

ened armadillo mesh . 48

Figure 4.24 Heat kernel signature for the original meshes (left) and their

simplified versions (right) . 49

xv

LIST OF TABLES

TABLES

Table 4.1 Timings obtained by enabling and disabling threading 38

xvi

LIST OF ABBREVIATIONS

3D 3 Dimensional

EVD Eigenvalue Descriptor

GPS Global Point Signature

HKS Heat Kernel Signature

xvii

xviii

CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Triangular meshes are frequently used to represent 3D models in geometry processing

and computer graphics areas. Most of the applications in these areas prefer high res-

olution models containing tremendous amount of details, in order to provide a more

realistic experience. However, as the complexity of a mesh increases, the computa-

tional cost required to process it also increases. This is where mesh simplification

methods come into the picture, in order to create a simpler version of the complex

mesh containing fewer details, by reducing the number of vertices , edges and faces

existing in the mesh.

Majority of these mesh simplification methods focus on preserving the appearance

of the mesh, which is the case preferred in areas such as rendering. Unfortunately,

appearance-preserving methods fall short of maintaining the spectral properties of

differential operators constructed on a mesh (see Figure 1.1), which is essential for

some geometry processing tasks such as shape correspondence and spectral distance

computations. When the simplification is performed by ignoring the spectral proper-

ties, the related computations carried out on the coarsened mesh might be inaccurate.

This thesis focuses on the problem of simplifying a 3D triangular mesh, while pre-

serving the spectral properties of the associated Laplace-Beltrami operator. In the

recent years, there have been major advancements in spectrum-preserving coarsening

methods. However, most of these methods address the problem from a complete al-

gebraic perspective. They rely on directly operating on the matrices corresponding to

the differential operators, thus not producing a mesh as output. The only spectrum-

1

preserving simplification method producing an output mesh is based on utilizing the

eigenvectors of the differential operator, maintaining the eigenvalues indirectly. Un-

like the previous methods, the method proposed in this thesis considers the eigenval-

ues of the Laplace-Beltrami operator instead of the eigenvectors, while outputting a

simplified triangular mesh. The method is evaluated on a variety of meshes, and it is

demonstrated that it preserves the spectrum of the Laplace-Beltrami operator at least

as effectively as the existing methods.

Figure 1.1: Lion mesh is reduced from 20212 vertices to 2000 vertices (10% of its

initial size). For an effective spectrum preservation, the functional map visualizations

should be resembling the identity matrix. Since the main focus of QSlim [1] is to

preserve the appearance of the mesh, it falls short of preserving the spectral properties.

1.2 Contributions

The contributions of the work conducted in this thesis are listed as the following:

• In this thesis, a new partition based mesh simplification method is proposed,

whose primary purpose is to preserve the spectrum of the Laplace-Beltrami

operator derived from a mesh. The method is capable of preserving the spec-

trum by considering only the eigenvalues of the operator, whereas the previous

2

methods are built around the eigenvectors.

• The proposed method is able to perform the spectrum preservation by consid-

ering only a small number of eigenvalues, since it is a partition based method.

• Among the existing spectrum-preserving coarsening methods, this method is

one of the two methods which produce a mesh as an output.

1.3 The Outline of the Thesis

Chapter 2 introduces the background information related to the method proposed in

this thesis. It also includes the review of the existing methods for the related topics

in the literature. In Chapter 3, the partition based mesh simplification method pro-

posed in this thesis is explained comprehensively. The spectrum preservation results

obtained by employing the method are presented in Chapter 4, along with detailed dis-

cussions revolving around the tunable parameters existing in the method. In addition,

the comparisons with a variety of previous spectral coarsening methods are included

in this chapter. Finally, Chapter 5 provides a summary of the previous chapters, along

with possible limitations of the proposed method, which may lead to advancements

in the area as future work.

3

4

CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, firstly, the background information required for understanding the

thesis clearly is introduced. How mesh simplification is performed, how the Laplace-

Beltrami operator is constructed in the scope of this work and its spectrum are ex-

plained in detail. Then, the previous work performed on the related topics are pre-

sented.

2.1 Mesh Simplification

Mesh simplification stands for the process of reducing the number of vertices, faces

and edges used to represent a mesh, while preserving specific properties of the origi-

nal mesh as much as possible. These properties often include geometric distances or

visual appearance [3]. For mesh simplification, several different operators have been

used such as vertex decimation [4], vertex clustering [5] or edge collapse [6]. In this

study, edge collapse operator is utilized to simplify the mesh models, as shown in

Figure 2.1.

Given an edge e joining two adjacent vertices u and v, an edge collapse operation

removes the edge e and replaces the vertices u and v with a new vertex w, by merging

them. This operation effectively removes the triangles adjacent to edge e along with

e itself, since they become degenerate with the removal of e. Edge collapse operation

removes one vertex from the mesh at a time, thus a sequence of successive edge

collapse operations are applied to obtain a coarser mesh.

5

Figure 2.1: Edge collapse and vertex split operations

The inverse of the edge collapse operator is called vertex split [7]. Vertex split op-

erator inserts a new vertex, a new edge and two new triangles to the mesh, as shown

in Figure 2.1. In the scope of this thesis, vertex split operator is used only to invert

an edge collapse, while in other applications, it is commonly used for increasing the

resolution of the surface mesh.

Figure 2.2: Edge collapse and vertex split operations for boundary edge

Figure 2.2 illustrates the edge collapse and vertex split operations for a boundary

edge. If edge e is a boundary edge, an edge collapse operation removes only one

triangle from the mesh, and vertex split operation introduces only one new triangle to

the mesh.

2.2 Laplace-Beltrami Operator

In this section, the matrices forming the Laplace-Beltrami operator, how they are

constructed in the scope of this work, and several spectral properties of the Laplace-

6

Beltrami operator are explained comprehensively. For simplicity, the Laplace-Beltrami

operator will be called as the Laplacian operator for the rest of the thesis.

2.2.1 Laplacian Matrix

There are several different types of Laplacian matrices that are commonly used in

spectral mesh processing, such as the uniform Laplacian (first introduced in [8]),

cotangent Laplacian (first proposed in [9]) etc. Uniform Laplacian matrix is build

upon only the connectivity of the mesh, whereas the cotangent Laplacian encodes

the geometric information of the mesh along with the connectivity. Therefore, the

cotangent Laplacian form is preferred in this work.

Let us first define the uniform Laplacian matrix. Given a triangular mesh M =

(V , E ,F) with n vertices, V denotes the set of vertices, E denotes the set of edges and

F denotes the set of triangular faces. The uniform Laplacian matrix constructed for

M is an n× n sparse matrix and it can be defined as the following:

Lij =


−1 if (i, j) ∈ E

di if i = j

0 otherwise

(2.1)

where Lij stands for the element residing on the ith row and the jth column of the

matrix L and di is the degree of vertex i.

For better understanding, a small sample mesh and its corresponding uniform Lapla-

cian matrix are provided in Figure 2.3. It can be seen that the uniform Laplacian only

stores the adjacency information of the vertices for a mesh.

7

Figure 2.3: Uniform Laplacian matrix for a sample mesh

The cotangent Laplacian matrix is obtained by introducing the cotangent weighting

scheme on top of the uniform Laplacian. The cotangent Laplacian for M can be

defined as the following:

Lij =


−wij if (i, j) ∈ E∑
k∈N(i)

wik if i = j

0 otherwise

(2.2)

where Lij stands for the element residing on the ith row and the jth column of the

matrix L, N(i) denotes the vertices in the one-ring neighborhood of vertex i and

wij =
1

2
(cotαij + cotβij) (2.3)

The angles used in the cotangent weighting scheme are shown in Figure 2.4. It should

be noted that for a boundary edge, only one angle is considered, the angle βij is

assumed as zero.

8

Figure 2.4: The angles used in the cotangent weights [2]

2.2.2 Mass Matrix

Given a triangular meshM = (V , E ,F) with n vertices, V denotes the set of vertices,

E denotes the set of edges and F denotes the set of triangular faces. Mass matrix,

also known as the area matrix, forM is a diagonal matrix with size n× n. For each

vertex, it consists of an area measure defined around the one-ring neighborhood of the

vertex. This area can be calculated with several different methods such as barycentric

cell area, Voronoi cell area or mixed Voronoi cell area [3]. In this thesis, barycentric

cell area, shown in Figure 2.5, is preferred, which corresponds to approximately one

third of the areas of the one-ring triangles of a vertex as described in Equation 2.4.

Figure 2.5: Barycentric cell area for vertex i [3]

Ai =
1

3

∑
Tj∈N(i)

area(Tj) (2.4)

9

In Equation 2.4, Ai represents the barycentric cell area for vertex i and Tj ∈ N(i) is

the list of triangles lying in the one-ring neighborhood of vertex i. Then, the diagonal

mass matrix for the given mesh can be defined as the following:

M =


A1 0 0

0
. . . 0

0 0 An

 (2.5)

2.2.3 Spectrum of the Laplace-Beltrami Operator

Having described the Laplacian matrix L and the mass matrix M , the discrete Laplace-

Beltrami operator is defined as in Equation 2.6.

∆f = M−1L (2.6)

Laplacian matrix is a symmetric and positive semi-definite matrix, which leads to

real-valued eigenvalues, whose corresponding eigenvectors form an orthogonal basis.

Let the eigenvalues of the Laplacian operator be 0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn and their

associated eigenvectors be v1, v2, . . . , vn. The spectrum of the Laplacian operator is

defined as the set of eigenvalues λ(L) = {λ1, λ2, ..., λn} [10]. Therefore, preserv-

ing the spectrum of the Laplacian operator of a mesh means preserving the set of

eigenvalues as much as possible, which is the main goal of the work described in this

thesis.

The standard eigenvalue problem for the Laplacian operator can be written as in Equa-

tion 2.7.

(M−1L)v⃗ = λv⃗ (2.7)

Although both L and M are symmetric matrices, the Laplacian operator might be non-

symmetric. This results with some problems both from the theoretical perspective and

the numerical perspective, since the eigenvalues and eigenvectors of non-symmetric

matrices are not guaranteed to be real valued. Therefore, in order to find the eigen-

values and eigenvectors of the Laplace-Beltrami operator, the generalized eigenvalue

problem is considered [11]. The general definition of the generalized eigenvalue prob-

lem is that given two symmetric matrices A ∈ Rn×n and B ∈ Rn×n, they satisfy the

equality given in Equation 2.8.

Av⃗ = λBv⃗ (2.8)

10

Thus, the generalized eigenvalue problem for the Laplacian matrix Ln×n and the mass

matrix Mn×n can be written as in Equation 2.9.

Lv⃗ = λMv⃗ (2.9)

This formulation guarantees that all of the generalized eigenvalues and eigenvectors

are real-valued. In addition, with L and M being symmetric and positive semi-

definite, the generalized eigenvectors are orthogonal to each other.

If the eigen-decomposition of the Laplacian operator is examined from a signal-

processing perspective, the Laplacian operator can be interpreted as a discrete signal

defined over the mesh surface representing the mesh geometry. Thus, it can be seen

that it is analogous to Fourier analysis in a way that the eigenvalues of the Laplacian

correspond to the natural frequencies, while the eigenvectors correspond to the natu-

ral vibration modes or the harmonics of a surface mesh [8]. This is actually one of the

main reasons why the Laplacian operators are exploited in spectral mesh processing

tasks frequently.

The eigenvectors can be visualized over the mesh surface as in Figure 2.6, such that

the ith entry of an eigenvector corresponds to the magnitude of the eigenvector at ver-

tex vi, where ϕj stands for the eigenvector associated with the jth smallest eigenvalue.

Figure 2.6: Visualization of the eigenvectors over the mesh surface

When the eigenvectors are visualized over the mesh surface, it can be observed that

the first few eigenvectors associated with small (low-frequency) eigenvalues look

smoother over the surface, compared to the eigenvectors lying at the end of the spec-

trum associated with large (high-frequency) eigenvalues. This is because the first

eigenvectors change slowly over the mesh, unlike the last eigenvectors which are

showing rapid changes over the surface. Furthermore, since the value of the first

11

eigenvalue is zero, the corresponding eigenvector ϕ0 is a constant vector, which can

be interpreted as the lowest frequency or the smoothest function [2].

If the elements of the matrix corresponding to the discrete Laplacian operator are

examined separately, it is observed that they only stand for some local information

gathered around the local neighborhood of a vertex. However, when the eigenval-

ues and the eigenvectors of the Laplacian operator are examined, they turn out to be

capable of storing the global characteristic information about the mesh. One simple

example can be that the multiplicity of the zero eigenvalue corresponds to the number

of connected components in the mesh [10].

2.3 Related Work

This section addresses the previous work related to mesh simplification, the use of

Laplace-Beltrami operator in spectral geometry processing and spectral coarsening,

considering the topics that the method presented in this thesis is built on.

Mesh simplification has been a well-studied topic in computer graphics area due to the

growing need to be able to represent the meshes at different resolutions correspond-

ing to different level-of-details. For the current context, mesh simplification methods

can be categorized as appearance-preserving and spectrum-preserving methods. The

majority of the simplification methods are focused on preserving the appearance and

the geometric properties of the mesh. The most prominent previous examples in

this area include mesh optimization [6] and mesh decimation [4]. One of the most

well-known algorithms among the appearance-preserving simplification methods is

the quadric error metrics method introduced by Garland and Heckbert [1]. Later, this

greedy edge collapse algorithm is extended to preserve a variety of vertex attributes

such as textures, colors or normal vectors along with the geometry [12, 13]. For the

appearance-preserving methods, [14] provides a comprehensive study, where mul-

tiple mesh simplification methods are examined and compared. Even though these

methods manage to preserve the appearance of the mesh successfully, they fall short

of maintaining the spectral properties of differential operators constructed on a mesh,

which lie at the core of some geometry processing tasks such as shape correspon-

12

dence.

Laplace-Beltrami operator has been utilized for a variety of spectral geometry pro-

cessing tasks for many years. The use of Laplacian operator for mesh processing was

first introduced by Taubin [8], pointing out the analogy between the Laplacian oper-

ator and the Fourier analysis. The eigenvalues and eigenvectors of the Laplacian are

then exploited in areas such as mesh segmentation [15,16], shape correspondence [17]

and mesh compression [18]. Karni and Gotsman [18] performed spectral mesh com-

pression by dividing the mesh into smaller patches to reduce the computational cost,

similar to the partitioning carried out in our method.

Alongside these studies, since the Laplacian operator is invariant under isometric

transformations, it also served as a robust foundation for deformation-invariant shape

descriptors. With this purpose, the eigenvalues of the Laplacian operator are utilized

for extracting fingerprints called shape-DNA, to represent a surface or a mesh [19,20].

These works have proved that the spectrum of the Laplacian has a discriminative

power that is capable of capturing the global properties of a shape. However, it should

also be noted that the spectrum of the Laplacian does not provide a complete identifi-

cation for the shape, since there are some rare cases, where two non-isometric shapes

have the same spectrum. The use of eigenvalues alone as shape descriptors is one of

our source of inspirations for depending this simplification method on the eigenval-

ues of the Laplacian operator. Following these works, shape signatures called global

point signature (GPS) [11] and heat kernel signature (HKS) [21] are introduced, in-

cluding the eigenvectors into the scenario as well. These shape descriptors are utilized

in works such as detecting global intrinsic symmetries of the shapes by Ovsjanikov

et al. [22].

For more information about the work conducted on mesh processing using the Lapla-

cian framework and the use of spectral methods in various fields of geometry pro-

cessing, it is recommended that the surveys presented by Sorkine [2] and Zhang et

al. [10] are examined.

In the recent years, there has been significant developments in simplification methods

which are focused on preserving the spectral properties of a mesh rather than just

the appearance. Öztireli et al. [23] resampled points on a manifold surface by pre-

13

serving the spectrum of the Laplacian operator. Similarly, Liu et al. [24] presented a

spectrum-preserving coarsening method, which is also built on sampling points from

the original mesh. Their method can be directly applied to the discrete geometric

operators derived from a mesh including the Laplacian operator. They also intro-

duced a metric build upon functional maps [25] to measure how well the spectrum

of an operator is preserved after the coarsening. The mentioned metric is utilized in

this work, as well as in [26] and [27]. However, both of the proposed methods do

not produce a mesh. Later, Lescoat et al. [26] proposed a spectral mesh simplifica-

tion method built upon the formulation presented in [24], which produces a mesh as

output. They altered the greedy edge collapse algorithm introduced by Garland and

Heckbert [1] with a spectral cost metric. Their spectral cost relies on the eigenvectors

of the Laplacian while preserving the spectrum, whereas the method proposed in this

thesis focuses directly on preserving the eigenvalues of the Laplacian operator. Fol-

lowing the work of Liu et al. [24], Chen et al. [27] proposed an operator coarsening

scheme using chordal decomposition, enabling the optimization of an operator sepa-

rately from the mesh. The main difference that separates our method from the existing

spectral simplification methods is that our method solely relies on the eigenvalues of

the Laplacian operator, whereas the others utilize the eigenvectors.

14

CHAPTER 3

METHOD

The method proposed in this thesis is a spectrum-preserving mesh simplification al-

gorithm based on edge collapse operations. The main goal of the method is to pre-

serve the spectral properties of the input mesh at the low frequencies as much as

possible, while reducing the number of elements used to represent the mesh. Pre-

serving the spectral properties of the mesh indicates maintaining the spectrum of the

Laplacian operator defined on the mesh, which corresponds to the eigenvalues of

the Laplacian operator as stated in Section 2.2.3. However, it is a known fact that

the eigen-decomposition of large matrices like the Laplacian operator defined on a

high-resolution mesh is a very costly computation. Thus, instead of preserving the

whole spectrum, the proposed method only focuses on preserving the low frequency

end of the spectrum. The reason for that is the high-frequency components will not

be present on the coarser domain [24]. Therefore, there is no reason for trying to

preserve the high frequency end of the spectrum. This situation allows to focus on

the more meaningful part of the spectrum and instead of computing the whole spec-

trum of the operator, the eigen-decomposition can be performed for only the first k

components.

In the upcoming sections in this chapter, the details of the work conducted, how

the spectrum-preserving simplification method works, the algorithm and the related

parameters are explained.

3.1 Algorithm

The algorithms used in this work are presented in Algorithm 1 and Algorithm 2.

15

Algorithm 1 Spectrum-Preserving Simplification
Input:M = (V , E ,F),m, k, p, n, x

Output: M̃ = (Ṽ , Ẽ , F̃)

1: Ṽ ← V ; Ẽ ← E ; F̃ ← F
2: Divide the mesh M̃ into smaller partitions M̃1,M̃2, . . . ,M̃p where M̃i =

(Ṽi, Ẽi, F̃i)

3: Assign partitions M̃1,M̃2, . . . ,M̃p to threads T1, T2, . . . , Tp

4: Calculate the number of edges that will be collapsed in each partition

nE1, nE2, . . . , nEp

5: Assign threads T1, T2, . . . , Tp to thread batches B1, B2, . . . , Bb

6: for batch Bi in B1, B2, . . . , Bb do

7: for thread Tj in batch Bi do

8: Λin = {λin1 , . . . , λink
} ← the first k eigenvalues of the Laplacian for parti-

tion M̃j

9: while nEj > 0 do

10: allCosts← FindEdgeCosts(M̃j, Ẽj, k,Λin)

11: bestEdges← edgeIds of allCosts[0 : n]

12: Collapse bestEdges[0]; nEj ← nEj − 1

13: for i in 1, . . . , x do

14: costs← FindEdgeCosts(M̃j, bestEdges, k,Λin)

15: Collapse costs[0]; nEj ← nEj − 1

16: end for

17: end while

18: end for

19: end for

16

Algorithm 2 FindEdgeCosts

Input: M̃j = (Ṽj, Ẽj, F̃j), E , k,Λin

Output: costs

1: costs← {}
2: for edge e ∈ E do

3: result← Collapse edge e

4: if result is successful then

5: Λout = {λout1 , . . . , λoutk} ← the first k eigenvalues of the Laplacian for

partition M̃j

6: coste ← the difference between Λin and Λout wrt Levd norm

7: Reverse the edge collapse

8: end if

9: Add (e, coste) into costs

10: end for

11: Sort costs wrt increasing cost

12: return costs

The input to the algorithm is a manifold triangular meshM = (V , E ,F), which can

possibly contain boundaries. After the simplification process, it outputs a coarser

mesh M̃ = (Ṽ , Ẽ , F̃) with spectral properties as close as possible toM. In addition,

the algorithm also requires that the following inputs are provided:

• m: the desired number of vertices in the simplified mesh

• k: the number of eigenvalues to preserve

• p: the number of partitions which the mesh will be divided into

• x: the number of similar edge collapses that will take place, after choosing

the best edge to collapse for the current step by considering all the edges in a

partition

• n: the number of edges to consider while choosing the similar edge collapses

The main idea lying at the core of the algorithm is to compare the distance between the

eigenvalues of the Laplacian computed on the original mesh and the eigenvalues after

17

an edge collapse, for measuring spectrum preservation. Since the method is focused

on preserving the low frequency components of the spectrum, instead of calculating

and comparing all the eigenvalues of the operator, only the smallest k eigenvalues

are considered. The parameter k provided to Algorithm 1 specifies the number of

eigenvalues aimed to be preserved. For both the shape descriptors described in [11]

and the global surface representation performed in [28], the number of eigenvalues

found to be sufficient for representing the global properties of a surface changes from

20 to 25. Based on these sources of inspiration, k is selected as 15 for the presented

method, unless otherwise stated.

Algorithm 2 summarizes the main eigenvalue comparison method mentioned. It is

based on collapsing the edges given in the edge set E one by one and associating

each edge with a cost measuring how much the spectrum of the Laplacian operator is

affected from the current collapse. After each edge is assigned a cost, they are sorted

with respect to increasing cost. The cost associated with each edge is calculated by

comparing the set of first k eigenvalues with respect to a norm. During the implemen-

tation process, several different norms have been tried including the L2 norm, but Levd

norm has outperformed the others. Levd norm is originated from the work conducted

in [28]. In their work, the eigenvalues of the affinity matrix operator is used as a shape

descriptor, called the eigenvalue descriptor (EVD). In order to measure the distance

between two eigenvalue descriptors, they utilize the norm provided in Equation 3.1.

Here, λM
i and λM̃

i stand for the ith eigenvalues of the Laplacian operators derived

from the input and output meshes respectively.

Levd(M,M̃) =
1

2

k∑
i=1

[
|λM

i |
1
2 − |λM̃

i |
1
2

]2
|λM

i |
1
2 + |λM̃

i |
1
2

(3.1)

In order to make sure that the selected edge collapse would result with the best preser-

vation of the spectrum amongst the current choices, all of the edges are considered

one by one. However, this approach requires the eigenvalues of the Laplacian to be

computed after each collapse for all the edges in the mesh, at each step. As might be

expected, this results with a highly infeasible amount of time to wait even for select-

ing just a single edge to collapse. To give an example, for a mesh with n = 50000

vertices, the Laplacian matrix has size 50000 × 50000. The computation of the first

15 eigenvalues for this Laplacian takes approximately 1.4 seconds in our environ-

18

ment. This means that in order to choose a single edge which preserves the spectrum

the most, this eigen-decomposition process should be applied for each edge in the

mesh. To overcome this impractical situation, a variety of approaches are introduced

to the algorithm, which are explained in detail throughout this section, to make it as

efficient as possible. Even though the algorithm is built around this basic compari-

son idea, with the methods introduced on top of it, critical timing improvements are

achieved, without sacrificing quality, as will be shown in Section 4.2.

3.1.1 Partitioning

The first approach introduced on top of the core idea is partitioning. The main algo-

rithm presented in Algorithm 1 starts by dividing the mesh into smaller partitions, in

order to decrease the amount of suffering from high computational cost of eigenvalue

decomposition. Each partition is simplified separately, thus the Laplacian matrices

are constructed within the partition, instead of constructing them for the whole mesh.

This effectively decreases the size of the Laplacian matrix, leading to much faster

eigenvalue computations. In addition to that, when each partition is treated sepa-

rately, there are fewer edges to consider while choosing the best edge for a single

collapse. Apart from timing concerns, partitioning also has the advantage to capture

the properties of the local neighborhoods better. A sample partitioning is provided in

Figure 3.1.

Alongside its benefits, partitioning the vertices may introduce some problems to the

visual quality of the output mesh. When each vertex is assigned to a partition, the

triangles left between the partition boundaries constitute the edge-cut regions, as can

be seen in Figure 3.1. To minimize the possible negative outcomes of this, the par-

titioning strategy used should prioritize minimizing the edge-cut regions as much as

possible, while keeping the partitions well-balanced, in a way that the number of ver-

tices assigned to each partition are close to each other. However, it should be noted

that finding the optimal partitioning of a mesh while minimizing the number of edges

lying inside the edge-cut region is an NP-complete problem [29]. For these reasons,

a partitioning tool called METIS is utilized in this work, which provides an option to

prioritize minimizing the edge-cut regions to an extent that is sufficient for our pur-

19

Figure 3.1: Bunny mesh with n = 3485 divided into 10 partitions. The triangles in

the edge-cut region are marked with different coloring for better understanding.

poses [30]. This partitioning algorithm has also been used by Karni and Gotsman [18]

for partitioning the mesh into smaller sub-meshes with the same purpose described

here, for spectral compression tasks.

The partitioning used in this work guarantees that all edges belong to only one parti-

tion, in order to prevent the partitions from affecting each other. Actually, this con-

straint is the reason why the edge-cut regions occur in the first place. Since the edges

lying inside the edge-cut region do not belong to any partition, they are not collapsed

explicitly. It might be expected that this would result with an uneven triangulation on

the simplified mesh surface, where the edge-cut region stays the same as it was in the

input mesh, while the regions inside the partitions are simplified. Fortunately, that is

not the case, because the edge-cut region gets simplified indirectly, as the edges on the

partition boundaries are collapsed. This indirect simplification is illustrated in Figure

3.2. The edges highlighted with bold lines represent the partition boundaries, where

dark blue triangles belong to partition P1 and dark green triangles belong to partition

P2. If edge e lying on the boundary of partition P2 is collapsed, it can be observed

that it results with the removal of a triangle inside the edge-cut region. Light blue

triangles represent the triangles which will be removed indirectly with the collapse of

20

an edge lying on the boundary of partition P1, whereas light green triangles represent

the ones which will be removed with the collapse of an edge lying on the boundary

of partition P2. In this way, all of the triangles inside the edge-cut region are also in-

cluded in the simplification process and uneven triangulation on the coarsened mesh

is prevented as much as possible.

Figure 3.2: Simplification of the edge-cut region

While partitioning the mesh into smaller patches, there are several important points

to take into consideration. One of them is choosing the size of the partitions. In order

to allow the partitions to represent the global properties of the mesh along with the

local properties, the partition sizes should be adjusted carefully. Since each partition

is simplified within itself and has its own Laplacian operator built specifically for that

partition, they are not aware of the shape, the connectivity or the spectral properties

represented in the remainder of the mesh. If the partition sizes are too small, they

are not capable of representing the global properties enough. Figure 3.3 shows an

example for this situation, where the partition shown on the right is a better selection

than the left one, because the patch selected on the left is insufficient to represent its

overall neighborhood. On the contrary, if the partition sizes are too large, the timing

concerns jump back into the scene. Consequently, a sweet spot should be found for

the size of the partitions, to achieve the balance between providing noticeable timing

improvements and managing to maintain the global properties adequately. Partition

sizes are determined by the input parameter p in Algorithm 1, which implies the

number of partitions. In Section 4.2.1, the results obtained with several different

partition sizes are presented.

21

Figure 3.3: Different sized partitions on cactus mesh

Another important point is to decide how many edges should be collapsed from each

partition. A number of approaches can be considered for this. However, in this work,

same number of edges are collapsed from each partition, since the partitions are bal-

anced.

As experimentally demonstrated for the simplification works performed in [24] and

[26], the number of vertices left in the coarsened mesh should be at least 3 times the

number of eigenvalues to preserve, in order to preserve the spectrum of the Laplacian

operator properly. Since the Laplacian operators are constructed individually for each

partition, the number of vertices that should be present in a partition on the simplified

mesh should be at least 3 × k. Hence, this situation bounds the number of vertices

that can be removed from a partition, allowing the simplification only up to a point,

for correct preservation of the spectrum. To overcome this downfall of partitioning,

multi-step simplification with hierarchical partitioning is introduced to the method.

3.1.2 Multi-Step Simplification with Hierarchical Partitioning

If the desired output size m could not be achieved with the given number of partitions

p, hierarchical partitioning is applied for multiple levels until m could be achieved.

22

By employing multi-step simplification with hierarchical partitioning, the simplifi-

cation process is performed in multiple steps. At each step, the mesh is simplified

until an intermediate resolution, which satisfies the constraint mentioned above. The

number of simplification steps, desired resolutions and the number of partitions at the

intermediate steps are determined according to the input parameters p and m.

Assume that for eagle mesh, the p parameter was supplied as 100, where the desired

resolution m is much lower than the resolution that can be achieved with 100 par-

titions. In this case, the intermediate resolutions and the number of partitions are

calculated in a way that m could be achieved. Let the calculated number of partitions

for the intermediate steps be 100, 50 and 25. The hierarchical partitioning of the mesh

for this case can be illustrated as in Figure 3.4.

Figure 3.4: Multi-step hierarchical partitioning for eagle mesh

In order to obtain the described hierarchical partitioning, firstly, the mesh is divided

into 25 partitions. Then, each of these 25 partitions are divided into 2 to obtain 50

23

partitions. Since m is still could not be reached, the hierarchical partitioning is ap-

plied for one more step. For this, each of the resulting 50 partitions are divided into

2 smaller partitions to obtain 100 partitions. Here, it can be observed that hierarchi-

cal partitioning is actually analogous to a tree structure, as each partition is divided

into smaller patches step by step. Having applied the hierarchical partitioning, the

simplification is performed from the level containing more partitions to the level con-

taining less partitions. Hence, it starts with the step consisting of 100 partitions, then

it continues with 50 and 25 partitions respectively.

3.1.3 Eliminating Similar Edges

In order to speed up the edge selection process a bit more, an approach based on

removing a certain number of edges similar to the selected edge is followed. For this

purpose, a variety of metrics are considered such as Gaussian curvature, Global Point

Signature [11] and Heat Kernel Signature [21], to find out what "similar" means in this

context. However, exploiting these metrics has deteriorated the spectrum preservation

results slightly, so a simpler metric is preferred.

Firstly, the meaning behind a similar edge collapse should be defined. Assume that

edge e is collapsed for the current step. In order to find other edges that are similar

to e, we should look for edges that are spectrally close to e. This means that for two

edge collapses to be similar to each other, they should be affecting the spectrum with

an amount as close as possible to each other.

As explained before, at each step, the costs are calculated for all the edges in the par-

tition according to how much they affect the original spectrum. Then, the edges are

ordered with respect to this cost. At this point, instead of just choosing the topmost

edge with the minimum cost, top n edges can be extracted. The first thing that comes

to mind is to collapse these top n edges successively. However, this results with either

a degradation in the spectrum preservation or a deformation in the shape of the output

mesh. Thus, rather than collapsing all the extracted edges without any checks, we can

select a number of edges to collapse among these top n edges. Let this number be x.

To make it more clear, assume that for the first step all possible edge collapses in the

partition are reviewed and top n edges with the minimum costs are picked. Let this

24

edge set be E = {e1, e2, . . . , en}, where the edges are ordered with respect to increas-

ing cost. For the first step, edge e1 is collapsed, since currently it is the edge with the

minimum cost. For the second step, the best edge is selected among the remaining

edges in the set E , which corresponds to {e2, e3, . . . , en}. Assuming that edge e3 is

selected for the second step, for the third step only the edges in {e2, e4, . . . , en} are

considered. This process is repeated for a total of x iterations.

With this approach, all edges in the partition are only reviewed once every x steps

instead of at each step. In the remaining steps, eigenvalue calculations are only per-

formed for the edges in the set E . Considering that the size of E is much smaller

than the number of edges in the partition, this results with a substantial amount of

acceleration in the algorithm. The x and n values mentioned here are provided to

the algorithm as input parameters. It should be noted that n must be greater than 3x,

because some of the n edges will be removed indirectly through other edge collapses

in this subset.

3.1.4 Threading

The final acceleration technique introduced to the method is threading. Since the

mesh is already divided into a number of partitions and they are all treated separately,

the first thing that comes to mind is to run the partitions in parallel by assigning each

partition to a thread. However, if all the partitions are simplified concurrently, the

neighboring partitions affect each other. Because a vertex lying on the boundary of

partition P1 has part of its neighborhood in partition P2, which is a direct neighbor of

P1. This results with race conditions between the threads. In order to eliminate the

potential race conditions without utilizing concurrency control mechanisms and to

avoid making the method more complicated, threads are run batch by batch, in a way

that no two neighboring partitions are run at the same time. The problem of assigning

the threads into batches is analogous with the well-known graph coloring problem,

for which finding the optimal solution is an NP-complete problem [29]. However,

using one of the greedy solutions providing an upper bound on the number of batches

is sufficient for our purposes.

The greedy solution utilized here orders the vertices with respect to their degrees de-

25

creasingly and assigns the colors to vertices in that order [31]. In our case, vertices

correspond to partitions, where a partition’s degree is defined as the number of its

neighboring partitions. In addition, colors correspond to batches, in which the threads

are assigned. By employing this greedy algorithm, the number of thread batches re-

quired is guaranteed to be at most one more than the maximum number of neighbors

a partition has. Furthermore, in this way, significant time improvements and deter-

ministic results are achieved through threading, while ensuring that no partition affect

each other.

Figure 3.5: Partitions assigned to batches

Figure 3.5 shows an example of how the partitions are assigned to thread batches.

The partitions running at the same time are marked with the same color, where each

color represents a different thread batch.

26

3.1.5 Illegal Edge Collapses

While performing an edge collapse, it should be checked whether it is a legal oper-

ation or not. To avoid illegal collapses, the following checks are performed before

collapsing edge e:

• If both endpoints of the edge are boundary vertices, edge e must be a boundary

edge [6]. This ensures preserving boundaries of the mesh.

• All joint neighbors of the endpoints of the edge must be in a face with e [6].

This ensures the mesh is still manifold.

• For each neighboring face of edge e, the normals of the triangles should be

compared before and after the collapse as in [1]. If there is a normal flip, the

edge collapse should not be allowed to ensure that triangles do not flip, thus

avoiding mesh inversion.

• If after the edge collapse, the maximum dihedral angle of the edges in one-

ring neighborhood of e is greater than some threshold, the edge collapse should

be disallowed [6]. This is a heuristic check ensuring that the mesh does not

intersect itself after the edge collapse.

3.1.6 Implementation Details

In this section, several details about the implementation of the proposed method are

provided.

• The method is implemented with C++.

• Eigen library [32] is utilized for sparse and dense matrix operations.

• Spectra library [33], which is built on top of Eigen, is used for eigenvalue de-

composition of the Laplacian operator.

27

28

CHAPTER 4

EXPERIMENTS AND RESULTS

This chapter presents the mesh simplification results obtained with the proposed

method for different meshes. The metrics used for evaluation, the results achieved

by testing different parameters and comparisons with several previous methods are

demonstrated with details. All the results presented are obtained on a machine with

an Intel i7-6700HQ 2.60 GHz CPU and 16 GB of RAM.

4.1 Evaluation

In order to measure how well the spectrum of a mesh is preserved after the simplifi-

cation, functional maps and the quantitative metrics introduced by Liu et al. [24] and

Lescoat et al. [26] are used.

Functional maps [25] describe a way to transfer functions from one shape to another.

In spectral mesh simplification context, they are utilized as a measure to evaluate

how well the eigenvectors of the Laplacian operator L̃ ∈ Rm×m computed on the

output mesh M̃ represents the eigenvectors of the Laplacian operator L ∈ Rn×n

computed on the input meshM. In order to take only the low frequency components

into account, the functional map C will be considered for the first k eigenvectors.

Therefore, the functional map C ∈ Rk×k between the input and output meshes can be

defined as the following:

C = Φ̃TM̃PΦ (4.1)

In Equation 4.1, Φ ∈ Rn×k and Φ̃ ∈ Rm×k are the set of eigenvectors corresponding

to the first k eigenvalues of the Laplacian operator obtained on the input and output

meshes respectively. M̃ ∈ Rm×m stands for the mass matrix constructed on the output

29

mesh, and P ∈ Rm×n represents the projection matrix.

Projection matrix is a fine-to-coarse operator allowing to transfer functions across

meshes at different resolutions. Since the Laplacian operators computed on the in-

put and output meshes have different sizes, their corresponding eigenvectors are of

different lengths as well. In order to be able to compare them in a meaningful way,

projection matrix P is utilized in the functional map. P can be computed during the

simplification process as in [26] or it can be computed as a subset selection operator

as in [24]. In this work, it is also computed during simplification like Lescoat et al.

did [26].

Throughout the simplification process, each edge collapse operation is associated

with a restriction matrix Q, summarizing the changes in the vertex set of the mesh

caused by the edge collapse operation. Q ∈ Rn−1×n is defined as in Equation 4.2,

where n denotes the number of vertices existing in the mesh before the collapse.

V
′
= QV (4.2)

In Equation 4.2, V denotes the vertex set before the edge collapse, whereas V ′ denotes

the vertex set after the collapse.

Assume that edge e, joining vertices u and v is collapsed, where u is kept while v

is deleted from the mesh. Let u′ be the index of u after collapse, also the index of

the merged vertex, and x
′ be the index of vertex x after collapse. Considering this

notation, the non-zero elements in the Q matrix are given as the following:

Qu′u = 0.5

Qu
′
v = 0.5

∀x ∈ V − {u, v}, Qx′x = 1

(4.3)

In general, the merged vertex position can be calculated by interpolating between the

positions of u and v, as in Equation 4.4. It should be noted that in this work α is

selected as 0.5, since merged vertex position is the midpoint of the edge.

u
′
= (1− α)u+ αv (4.4)

In order to obtain the projection matrix P , Algorithm 1 described in Chapter 3 should

be modified in a way that initially P matrix is set to identity, and with each edge

30

collapse, it is updated with the Q matrix associated with that collapse. This can be

defined as the following:

P = QnQn−1 . . . Q2Q1 (4.5)

where Qi is the restriction matrix for the ith edge collapse.

Having calculated P , C matrix can also be defined as an inner product matrix between

the first k eigenvectors of L and L̃ [24]. Since the eigenvectors are orthonormal, the

optimal functional map C should be a diagonal matrix filled with values −1 and

1 [27], as shown in Figure 4.1.

Figure 4.1: Optimal functional map C, where red and blue elements correspond to

values 1 and −1 respectively

The closer the C matrix to a diagonal matrix, the better the spectrum is preserved. It

should be noted that if the eigenvalues have multiplicity, C will be in block-diagonal

form, as in the case for a sphere mesh (see Figure 4.2).

31

Figure 4.2: Block diagonal C for a sphere mesh simplified from 650 vertices to 200

vertices

For not relying only on the comparisons of the visualizations of the C matrix, the

following norms are introduced in [26] as quantitative metrics:

Laplacian commutativity: ∥C∥2L =
∥CΛ− Λ̃C∥2

∥C∥2

Orthonormality: ∥C∥2D = ∥CTC − Id∥2
(4.6)

where Λ, Λ̃ ∈ Rk×k are diagonal matrices storing the first k eigenvalues calculated on

the input and output meshes respectively. Here, the Laplacian commutativity norm

is originated from the idea that the eigenvalues of the Laplacian should not change

between the original and the simplified meshes. On the other hand, the orthonormality

norm is used as a quantitative measure to tell how close the functional map to the

identity matrix. Therefore, for these norms, the closer the values are to zero, the

better the spectrum is preserved throughout the simplification.

32

4.2 Results

For all the results that are presented in this section, the functional maps are of size

100× 100. Although the proposed method is only focused on preserving the first 15

eigenvalues, the functional maps are provided for the first 100 eigenvalues to indicate

the distribution behind the first 15, as well.

4.2.1 Number of Partitions

As the mesh is divided into more partitions, the size of each partition gets smaller.

Consequently, with each partition having fewer vertices, the size of the Laplacian op-

erators constructed for each partition are reduced, leading to faster eigenvalue compu-

tations. Besides, since the partitions are run concurrently via threading, as the number

of partitions increases, the time it takes to simplify the overall mesh decreases. Figure

4.3 shows the timing results obtained by employing different partition sizes for eagle

and bunny meshes. Bunny mesh originally has 3485 vertices and it is simplified until

1000 vertices remain, whereas the eagle mesh originally contains 25727 vertices and

it is simplified until 14000 vertices left.

Figure 4.3: Simplification times for eagle and bunny meshes with different partition

sizes

33

In Figure 4.3, partition size stands for the average number of vertices in a partition.

It can be observed that as the partition sizes shrink or as the number of partitions

increase, the total simplification time decreases. However, the partition sizes should

not be selected to be the smallest possible by only considering the timing improve-

ments, as explained in Section 3.1.1, since the main goal of this method is to preserve

the spectrum of the mesh. For each mesh, partition sizes are adjusted so that the

acceleration amount is sufficient to compensate the loss in the spectrum preservation.

Figure 4.4: Results obtained by employing different number of partitions on eagle

mesh

34

Figure 4.4 presents the output meshes, functional maps and norms obtained by di-

viding the eagle mesh into 180, 100 and 50 partitions from left to right. Here, eagle

mesh is again simplified from 25727 vertices to 14000 vertices. As the number of

partitions is decreased, both of the norms tend to get closer to zero, meaning that the

spectrum of the Laplacian operator is better preserved. This is because while the par-

titions grow, their ability to represent the global properties of the overall mesh gets

improved as well. Even though it is not very distinctive from the visualization of the

functional maps here, if the high-frequency parts of the functional maps are examined

carefully, it can be observed that the functional map resembles the diagonal matrix

more and more, as it goes from left to right.

4.2.2 Number of Eigenvalues

The timing results obtained by preserving different number of eigenvalues are pro-

vided in Figure 4.5. Here, eagle mesh is simplified from 25727 vertices to 10000

vertices. It can be seen that as the number of preserved eigenvalues is increased, the

simplification time also increases, since the eigen-decomposition process performed

for the Laplacian operator at each step of the algorithm takes longer time than before.

Figure 4.5: Simplification times for eagle mesh by preserving different number of

eigenvalues

35

As stated in Section 3.1, the number of eigenvalues to preserve is selected as 15 for

this method, but different values can also be specified through the input parameter k.

The spectrum preservation results obtained by changing the number of eigenvalues to

preserve are presented in Figure 4.6, where the bunny mesh is coarsened until 1000

vertices remain. The provided plots show that both the Laplacian commutativity and

the orthonormality norms tend to decrease, as the number of eigenvalues to preserve is

increased. This is because increasing the number of eigenvalues results with a better

spectrum preservation for the higher frequency components. However, as previously

stated by the works conducted in [28] and [26], this holds only up to a certain point.

After that point, it only introduces higher computational cost to the method.

Figure 4.6: ∥·∥L and ∥·∥D values obtained on bunny mesh for different number of

eigenvalues

4.2.3 Similar Edge Collapses

For the parameters x and n, different combinations are tested such that 3x < n (see

Section 3.1.3). As a reminder, x stands for the number of similar edges to collapse,

while n determines the size of the edge set that these similar collapses are chosen

among. Experimentally, it is found that the best performance is mostly achieved by

selecting x as 4, and n as 20.

Figure 4.7 presents the results obtained on teddy mesh (simplified from 9480 vertices

36

to 1000 vertices), for some of the tested combinations. In general, it is observed that

as the number of similar edge collapses increases, both of the norms increase. It can

also be seen that the bottom right parts of the functional maps which correspond to the

high-frequency eigenvalues start to scatter, indicating that the capability to preserve

the spectrum at the higher frequencies decrease. This is because as the number of

similar edge collapses increases, more edges are chosen among the same restricted

subset of edges. However, the mesh gets modified with each edge collapse, while the

edges in the restricted subset were selected as the best choices for an older state of the

mesh. At some point, the edges outside that subset may be preserving the spectrum

more than the edges in the subset, however they are left as not considered. Therefore,

it is a better practice not to keep the number of similar edge collapses too high.

Figure 4.7: Spectrum preservation and timing results for various values of x and n

The timing results can also be found at the bottom part of the Figure 4.7, for the re-

lated x and n combinations. It can be observed that increasing the number of similar

edge collapses decrease the simplification time, but only up to a point. At first glance,

it might be appealing to eliminate a large number of similar edges by performing less

eigenvalue computations. However, it is a bit impractical to keep the size of the edge

set too large, because when there are many edges to consider, timing enhancements

do not meet the expectations. Instead, choosing the similar edges from a small subset

produces both better quality outputs and better timings. By taking all these consider-

37

ations into account, for the rest of the experiments x and n are selected as 4 and 20

respectively, unless otherwise specified.

In order to emphasize the benefits of the similar edge collapse approach, the results

obtained by disabling and enabling similar edge collapses are shown in Figure 4.8.

It can be seen that enabling similar edge collapses reduces the simplification time to

approximately one fifth of the previous timing, while affecting the spectrum as little

as possible.

Figure 4.8: Results obtained by enabled and disabling similar edge collapses

4.2.4 Threading

For several meshes, timing results obtained by enabling and disabling threading are

provided in Table 4.1.

Table 4.1: Timings obtained by enabling and disabling threading

Mesh
Number of Number of Time with Time without

Vertices Threads Threading (mins) Threading (mins)

bunny 3485 15 9 18

camel 9757 48 13 40

cactus 25131 180 17 75

eagle 25727 180 18 76

38

Here, the number of threads equals the number of partitions that the mesh is divided

into. As can be seen, threading provides a significant reduction in simplification

times. However, the acceleration amount is not the same as the number of threads.

This is because threads are executed batch by batch, in a way that only the partitions

that are not direct neighbors of each other are run concurrently.

Although there is no linear relationship between the total number of partitions and

the amount of acceleration, contributions of threading become more noticeable for the

meshes with more partitions. The reason behind this can be visualized with a plot as in

Figure 4.9. Green, blue and red lines respectively indicate the minimum, average and

maximum number of threads existing in a batch, for the given number of partitions. It

can be observed that when there are more partitions in a mesh, the average number of

threads per batch gets increased as well, leading to a higher amount of parallelization.

For instance, if there are 8 partitions in a mesh, the number of threads in each batch

will be between 2 and 3. On the other hand, if there are 100 partitions in a mesh,

the number of threads per batch will range from 11 to 24, which results with a more

remarkable timing reduction.

Figure 4.9: The number of threads (partitions) running at the same time for various

number of partitions

39

4.2.5 Comparisons

The proposed method is evaluated by comparing against some of the existing spectrum-

preserving methods such as spectral coarsening [24], spectral simplification [26] and

chordal coarsening [27]. For fair comparison, all of the methods are configured to

preserve the first 15 components of the spectrum along with ours. It should be noted

that our method and the spectral mesh simplification method proposed by Lescoat et

al. [26] produce a coarsened mesh as output. However, the methods proposed by Liu

et al. [24] and Chen et al. [27] do not produce an output mesh. They are based on

coarsening the supplied differential operator instead of a mesh. Therefore, for their

methods, the vertices that are selected to exist on the coarsened domain are visualized

by marking the vertices on the original mesh.

To make the quantitative results comparable, before obtaining the results, all the

meshes are scaled so that their surface areas correspond to unit area. For the mass

matrices M and M̃ , it is ensured that tr(M) = tr(M̃) = 1. This surface area nor-

malization is also required to be able to compare the eigenvalues robustly, since they

are affected by the surface area [34].

For all the results, the functional maps are calculated for the eigenvectors correspond-

ing to the first 100 eigenvalues and the related norms are presented. In addition, for

each mesh, the first 100 eigenvalues of the coarsened Laplacian operator obtained

with different methods are compared with a plot, indicating how much they resemble

the original eigenvalues.

By examining the norms provided for the functional map C100×100, it can be ob-

served that the presented method outperforms the others when considering the first

100 eigenvalues. Even though the algorithm is focused on preserving the first 15

eigenvalues, it is shown that it manages to maintain the spectrum beyond the first 15.

In some cases as in Figure 4.10, our results are head-to-head with Lescoat et al. [26],

but for most of the cases, it can be seen that this method preserves the spectrum better

than theirs. When the appearance of the output meshes are compared, their method

produces meshes with better quality triangulations, with respect to the presented par-

tition based method. However, Figure 4.20 shows that, in some cases such as the head

40

and the toes of the camel mesh, the details may get completely lost with their method,

while this method still manages to preserve them.

When the presented method is compared with the method of Liu et al. [24], from both

the functional maps and the eigenvalue plots, it can be observed that the presented

method preserves the spectrum better than theirs, while considering a small number

of eigenvalues.

When the functional map visualizations are considered, for the majority of the cases,

the method proposed by Chen et al. [27] seems to preserve the spectrum better than all

other methods including ours, since they resemble the identity matrix more. However,

it should be noted that the functional map visualizations represent the eigenvector

preservation. When the norms are examined, it can be seen that their Laplacian com-

mutativity norms are much larger than ours. This is because although their method

manages to preserve the first 15 eigenvalues, it fails to preserve the eigenvalues be-

yond that point, as can be seen from the eigenvalue plots.

The main advantage of this method over the existing methods is to be able to pre-

serve the spectrum by focusing on a small number of eigenvalues such as 15, while

outputting a simplified mesh. This method focuses on preserving the eigenvalues

directly, whereas other existing methods carry out this implicitly by preserving the

eigenvectors. In theory, working with eigenvalues might seem to be more efficient

than working with eigenvectors. Unfortunately, since this method contains many

eigenvalue computations from scratch, the timings are much longer than other meth-

ods.

41

Figure 4.10: With each method, bunny mesh is simplified from 3485 to 600 vertices

(17% of its initial size).

Figure 4.11: The first 100 eigenvalues of the Laplacian operator for the coarsened

bunny mesh

42

Figure 4.12: With each method, eagle mesh is simplified from 25727 to 2000 vertices

(8% of its initial size).

Figure 4.13: The first 100 eigenvalues of the Laplacian operator for the coarsened

eagle mesh

43

Figure 4.14: With each method, cactus mesh is simplified from 25131 to 2000 vertices

(8% of its initial size).

Figure 4.15: The first 100 eigenvalues of the Laplacian operator for the coarsened

cactus mesh

44

Figure 4.16: With each method, lion mesh is simplified from 20212 to 2000 vertices

(10% of its initial size).

Figure 4.17: The first 100 eigenvalues of the Laplacian operator for the coarsened

lion mesh

45

Figure 4.18: With each method, dragon mesh is simplified from 20741 to 1500 ver-

tices (7% of its initial size).

Figure 4.19: The first 100 eigenvalues of the Laplacian operator for the coarsened

dragon mesh

46

Figure 4.20: With each method, camel mesh is simplified from 9757 to 800 vertices

(8% of its initial size).

Figure 4.21: The first 100 eigenvalues of the Laplacian operator for the coarsened

camel mesh

47

Figure 4.22: With each method, armadillo mesh is simplified from 49990 to 3000

vertices (6% of its initial size).

Figure 4.23: The first 100 eigenvalues of the Laplacian operator for the coarsened

armadillo mesh

48

4.2.6 Heat Kernel Signature

Figure 4.24: Heat kernel signature for the original meshes (left) and their simplified

versions (right)

49

For an application example, the visualizations of the heat kernel signature on the

original high resolution mesh and the coarsened version are provided in Figure 4.24,

for several meshes. For each vertex, the heat kernel signatures are visualized with

respect to a reference vertex, which is marked with green in the figure. Here, the

bunny mesh is simplified to 17% of its initial size, while the others are simplified to

8%. It can be observed that even with a high reduction ratio, the heat kernel signatures

almost stay the same, which implies the spectrum preservation between the original

and the simplified meshes.

50

CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, a mesh simplification method, which is focused on preserving the spec-

tral properties of the input mesh as much as possible, is presented. The main idea

lying at the core of the algorithm is comparing the eigenvalues of the Laplacian op-

erators constructed on the mesh at different steps, to decide which edges to collapse.

In order to reduce the computational cost caused by the eigenvalue decompositions

carried out in the algorithm, the mesh is divided into smaller partitions and each par-

tition is coarsened separately. On top of that, to minimize the number of eigenvalue

decompositions performed and to further improve the simplification times, threading

and an approach based on eliminating spectrally close edges are introduced. The al-

gorithm is tested on several meshes. By utilizing the functional maps and quantitative

metrics proposed by Liu et al. [24] and Lescoat et al. [26], it is demonstrated that the

proposed method is capable of maintaining the spectrum by preserving a small num-

ber of eigenvalues. The method is compared with the existing spectral coarsening

methods and it is shown that the presented method is able to preserve the spectrum

at least as successfully as the others. It is demonstrated that the coarsened meshes

produced by the algorithm are still able to represent the heat kernel signature simi-

lar to the way it was represented on the original mesh. Moreover, it is also shown

that spectrum-preserving mesh simplification can be performed only by considering

the eigenvalues, without needing the eigenvectors. Therefore, it is believed that this

method will benefit the future works, whose main focus is spectrum preservation.

The main limitation of this algorithm is about efficiency. It requires the computation

of the eigenvalues from scratch for each edge collapse that is considered. Even with

the methods introduced with the aim of reducing the number of eigenvalue computa-

51

tions, the algorithm is still unable to reach the simplification times of other existing

methods. One way to overcome the efficiency problem would be adapting the classic

priority queue method introduced by Garland and Heckbert [1] with the presented

cost metric, just as Lescoat et al. [26] did. However, to do this, an update rule for the

edge collapse costs should be found, such that after an edge is collapsed, the costs of

the remaining edges are updated without needing to compute the eigenvalues again.

In this way, the burden caused by the eigenvalue computations would be significantly

reduced.

Another limitation of this method is that for an edge collapse, the algorithm selects the

merged vertex position as the midpoint of the edge. Once the timings are improved,

the merged vertex position which results with the best spectrum preservation can be

computed by considering several different positions.

As a final note, this method is a greedy algorithm, so it does not guarantee that the set

of edge collapses performed leads to the optimal preservation of the spectrum. Yet, it

is believed that this naive way of utilizing the eigenvalues of the Laplacian operator

may establish a ground for more advanced spectrum-preserving algorithms.

52

REFERENCES

[1] M. Garland and P. S. Heckbert, “Surface simplification using quadric error met-

rics,” in Proceedings of the 24th annual conference on Computer graphics and

interactive techniques, pp. 209–216, 1997.

[2] O. Sorkine, “Laplacian mesh processing,” Eurographics (State of the Art Re-

ports), vol. 4, 2005.

[3] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Lévy, Polygon mesh process-

ing. CRC press, 2010.

[4] W. J. Schroeder, J. A. Zarge, and W. E. Lorensen, “Decimation of triangle

meshes,” in Proceedings of the 19th annual conference on Computer graphics

and interactive techniques, pp. 65–70, 1992.

[5] J. Rossignac and P. Borrel, “Multi-resolution 3d approximations for rendering

complex scenes,” in Modeling in computer graphics, pp. 455–465, Springer,

1993.

[6] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle, “Mesh opti-

mization,” in Proceedings of the 20th annual conference on Computer graphics

and interactive techniques, pp. 19–26, 1993.

[7] H. Hoppe, “Progressive meshes,” in Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques, pp. 99–108, 1996.

[8] G. Taubin, “A signal processing approach to fair surface design,” in Proceed-

ings of the 22nd annual conference on Computer graphics and interactive tech-

niques, pp. 351–358, 1995.

[9] U. Pinkall and K. Polthier, “Computing discrete minimal surfaces and their con-

jugates,” Experimental mathematics, vol. 2, no. 1, pp. 15–36, 1993.

[10] H. Zhang, O. Van Kaick, and R. Dyer, “Spectral mesh processing,” in Computer

graphics forum, vol. 29, pp. 1865–1894, Wiley Online Library, 2010.

53

[11] R. M. Rustamov et al., “Laplace-beltrami eigenfunctions for deformation in-

variant shape representation,” in Symposium on geometry processing, vol. 257,

pp. 225–233, 2007.

[12] M. Garland and P. S. Heckbert, “Simplifying surfaces with color and tex-

ture using quadric error metrics,” in Proceedings Visualization’98 (Cat. No.

98CB36276), pp. 263–269, IEEE, 1998.

[13] H. Hoppe, “New quadric metric for simplifying meshes with appearance at-

tributes,” in Proceedings Visualization’99 (Cat. No. 99CB37067), pp. 59–510,

IEEE, 1999.

[14] P. Cignoni, C. Montani, and R. Scopigno, “A comparison of mesh simplification

algorithms,” Computers & Graphics, vol. 22, no. 1, pp. 37–54, 1998.

[15] H. Zhang, R. Liu, et al., “Mesh segmentation via recursive and visually salient

spectral cuts,” Citeseer.

[16] R. Liu and H. Zhang, “Mesh segmentation via spectral embedding and contour

analysis,” in Computer Graphics Forum, vol. 26, pp. 385–394, Wiley Online

Library, 2007.

[17] V. Jain, H. Zhang, and O. Van Kaick, “Non-rigid spectral correspondence of

triangle meshes,” International Journal of Shape Modeling, vol. 13, no. 01,

pp. 101–124, 2007.

[18] Z. Karni and C. Gotsman, “Spectral compression of mesh geometry,” in Pro-

ceedings of the 27th annual conference on Computer graphics and interactive

techniques, pp. 279–286, 2000.

[19] M. Reuter, F.-E. Wolter, and N. Peinecke, “Laplace-spectra as fingerprints for

shape matching,” in Proceedings of the 2005 ACM symposium on Solid and

physical modeling, pp. 101–106, 2005.

[20] M. Reuter, F.-E. Wolter, and N. Peinecke, “Laplace–beltrami spectra as ‘shape-

dna’of surfaces and solids,” Computer-Aided Design, vol. 38, no. 4, pp. 342–

366, 2006.

54

[21] J. Sun, M. Ovsjanikov, and L. Guibas, “A concise and provably informative

multi-scale signature based on heat diffusion,” in Computer graphics forum,

vol. 28, pp. 1383–1392, Wiley Online Library, 2009.

[22] M. Ovsjanikov, J. Sun, and L. Guibas, “Global intrinsic symmetries of shapes,”

in Computer graphics forum, vol. 27, pp. 1341–1348, Wiley Online Library,

2008.

[23] A. C. Öztireli, M. Alexa, and M. Gross, “Spectral sampling of manifolds,” ACM

Transactions on Graphics (TOG), vol. 29, no. 6, pp. 1–8, 2010.

[24] H.-T. D. Liu, A. Jacobson, and M. Ovsjanikov, “Spectral coarsening of geomet-

ric operators,” arXiv preprint arXiv:1905.05161, 2019.

[25] M. Ovsjanikov, M. Ben-Chen, J. Solomon, A. Butscher, and L. Guibas, “Func-

tional maps: a flexible representation of maps between shapes,” ACM Transac-

tions on Graphics (ToG), vol. 31, no. 4, pp. 1–11, 2012.

[26] T. Lescoat, H.-T. D. Liu, J.-M. Thiery, A. Jacobson, T. Boubekeur, and M. Ovs-

janikov, “Spectral mesh simplification,” in Computer Graphics Forum, vol. 39,

pp. 315–324, Wiley Online Library, 2020.

[27] H. Chen, H.-T. D. Liu, A. Jacobson, and D. I. Levin, “Chordal decomposition

for spectral coarsening,” arXiv preprint arXiv:2009.02294, 2020.

[28] V. Jain and H. Zhang, “A spectral approach to shape-based retrieval of articu-

lated 3d models,” Computer-Aided Design, vol. 39, no. 5, pp. 398–407, 2007.

[29] D. S. Johnson and M. R. Garey, Computers and intractability: A guide to the

theory of NP-completeness. WH Freeman, 1979.

[30] G. Karypis and V. Kumar, “A software package for partitioning unstructured

graphs, partitioning meshes, and computing fill-reducing orderings of sparse

matrices,” University of Minnesota, Department of Computer Science and En-

gineering, Army HPC Research Center, Minneapolis, MN, vol. 38, 1998.

[31] D. J. Welsh and M. B. Powell, “An upper bound for the chromatic number of

a graph and its application to timetabling problems,” The Computer Journal,

vol. 10, no. 1, pp. 85–86, 1967.

55

[32] G. Guennebaud, B. Jacob, et al., “Eigen v3.” http://eigen.tuxfamily.org, 2010.

[33] Y. Qiu, “Spectra. a library for large scale eigenvalue problems.”

https://spectralib.org/, 2018.

[34] M. Reuter, F.-E. Wolter, M. Shenton, and M. Niethammer, “Laplace–beltrami

eigenvalues and topological features of eigenfunctions for statistical shape anal-

ysis,” Computer-Aided Design, vol. 41, no. 10, pp. 739–755, 2009.

56

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Motivation and Problem Definition
	Contributions
	The Outline of the Thesis

	BACKGROUND AND RELATED WORK
	Mesh Simplification
	Laplace-Beltrami Operator
	Laplacian Matrix
	Mass Matrix
	Spectrum of the Laplace-Beltrami Operator

	Related Work

	METHOD
	Algorithm
	Partitioning
	Multi-Step Simplification with Hierarchical Partitioning
	Eliminating Similar Edges
	Threading
	Illegal Edge Collapses
	Implementation Details

	EXPERIMENTS AND RESULTS
	Evaluation
	Results
	Number of Partitions
	Number of Eigenvalues
	Similar Edge Collapses
	Threading
	Comparisons
	Heat Kernel Signature

	CONCLUSION AND FUTURE WORK
	REFERENCES

